Термоэлектрический эффект и охлаждение — читайте все нюансы


Эффект Пельтье – это процесс, сопровождающийся появлением разницы температур на двух различных материалах при прохождении по ним электрического тока. Впервые объяснён академиком и изобретателем Ленцем.

Блок: 1/8 | Кол-во символов: 201
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Принцип действия

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Блок: 2/7 | Кол-во символов: 2079
Источник: https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82_%D0%9F%D0%B5%D0%BB%D1%8C%D1%82%D1%8C%D0%B5

Благодарности


Нельзя обойти благодарностью АН СССР и академика А.Ф. Иоффе за грандиозный труд по развитию термоэлектричества в СССР и доведения результатов исследований до сведения общественности.

Блок: 2/8 | Кол-во символов: 195
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Блок: 3/7 | Кол-во символов: 1685
Источник: https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82_%D0%9F%D0%B5%D0%BB%D1%8C%D1%82%D1%8C%D0%B5

Применяемость


Эффект Пельтье применяется для охлаждения, нагрев возможен любым проводником по закону Джоуля-Ленца. Следовательно, явление полезно:

  1. Для создания холодильников низкого напряжения и постоянного тока. С возможностью подогрева при изменении полярности питания. На западе так конструируют дорожные сандвиченницы. Холод сохраняет продукт от порчи, обратная полярность позволяет подать продукт на стол горячим.
  2. Кулеры процессоров вносят значительную лепту в общие шумовые характеристики системного блока. Если заменить их элементами Пельтье, порой хватает общего вентилятора. Он шумит не настолько сильно, корпус лишён мощного радиатора, а крепление надёжное (в отличие от материала материнской платы).

Блок: 3/8 | Кол-во символов: 707
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Применение

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, требуемая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийних холодильников и до −120 °C для двухстадийных).

«Электрогенератор Пельтье» — модуль для генерации электричества, термоэлектрический генераторный модуль аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:

  1. непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
  2. источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)

Блок: 4/7 | Кол-во символов: 1585
Источник: https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82_%D0%9F%D0%B5%D0%BB%D1%8C%D1%82%D1%8C%D0%B5

Развитие теории охлаждения


Эффект Пельтье не привлекал пристального внимания учёных, казался бесполезным. Открытый в 1834 году, пылился на полках научных библиотек более века прежде, нежели стали находиться первые значимые технические решения в этой области. К примеру, Альтенкирх (1911 год) заявлял о невозможности применения эффекта Пельтье в холодильных установках, в расчётах опирался на использование чистых металлов, вместо сплавов и полупроводников.

Ошибочность выводов немецкого учёного подтверждена позже, в чем немалая роль отводится лаборатории полупроводников Академии наук СССР. К 1950 году создана стройная теория, позволившая в течение последующего ряда лет создать первый электротермический холодильник. При сравнительно небольшом КПД в 20% прибор понижал температуру на 24 градуса, чего в большинстве случаев хватало для бытовых целей. Годами позже разница температур уже составляла 60 градусов.

В физике 50-х годов элемент Пельтье рассматривался как холодильная машина с электронным газом вместо фреона. Сообразно этому велось рассмотрение системы. Основной параметр – холодильный коэффициент, отношение количества тепла, забираемого в единицу времени к мощности, которая на это затрачивается. У современных фреоновых кондиционеров и холодильников цифра превышает единицу. В 50-х годах для элемента Пельтье едва достигала 20%.

Блок: 4/8 | Кол-во символов: 1341
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Эффект с позиций термодинамики

Эффект Пельтье описывается формулой, показывающей, какая энергия переносится при определённой величине электрического тока. Выражая её во временных единицах, находят мощность устройства, исходя из которой определяют потребности холодильника. Сегодня популярны бесшумные элементы Пельтье для кулеров процессоров. Небольшая пластина охлаждает кристалл и охлаждается радиатором кулера. Элемент Пельтье служит тепловым насосом, гарантированно отводящим тепло от центрального процессора, не давая перегреваться.

В формуле на рисунке через альфа обозначены коэффициенты термо-ЭДС половинок (составных частей) элемента. Т – рабочая температура в градусах Кельвина. В каждом элементе, как правило, присутствует побочный эффект Томсона: если по проводнику течёт ток, и вдоль линии имеется градиент (направленная разница) температур, станет, помимо джоулевой, выделяться и иная теплота. Последняя носит имя Томсона. В отдельных участках цепи энергия станет поглощаться. Значит, эффект Томсона оказывает сильное влияние на работу нагревателей и холодильников. Но является, как уже сказано, побочным, неучтённым фактором.

Теплота, переносимая эффектом Томсона, прямо пропорциональна разнице температур на концах проводника и зависит от величины протекающего тока. Явление проявляется лишь в веществах с ярко выраженной зависимостью коэффициента термо-ЭДС от температуры. В некоторых расчётах эффект Томсона считается нулевым, это близко к истине. В термодинамической теории процесс отдачи и отбора тепла рассматривается с точки зрения двух тепловых потоков:

  • Поток тепла, забираемый охлаждающимся спаем, сопровождается двумя параллельно идущими процессами:
  1. Паразитное выделение тепла по закону Джоуля-Ленца. В термодинамике берётся как половина произведения квадрата тока на сопротивление. Вторая половина падает на горячем спае.
  2. Поток нагрева теплом, идущим от тёплой части. Равен разнице температур, перемноженной с полной теплопроводностью ветвей термоэлемента.
  • На горячем спае идут обратные процессы по второму пункту (тепло уносится к охлаждаемой части) и аналогичные по первому – выделяется джоулева теплота.

Из формулировок следует, что действенным решением добиться максимального КПД станет теплоизоляция между спаями. В паре используются полупроводники, способные генерировать термо-ЭДС, электрическому току приходится преодолевать её сопротивление. Затрачиваемая энергия пропорциональна разнице температур и разнице коэффициентов термо-ЭДС веществ и зависит от протекающего тока. Графики зависимости представляют кривые, и дифференцируя их с целью найти экстремумы, возможно получить условия достижения максимальной разницы температур (между комнатой и холодильником).

На рисунках показаны результаты операции взятия производной, где вычислены оптимальные токи для сопротивления R термопары и предельного увеличения холодильного эффекта. Из указанных формул следует, что идеальная машина получится, если:

  • Электропроводность материалов термопары одинакова.
  • Теплопроводность материалов термопары одинакова.
  • Коэффициенты термо-ЭДС одинаковы, но противоположны по знаку.
  • Сечения и длины ветвей термопары одинаковы.

Реализовать эти условия на практике сложно. В этом случае предельный холодильный коэффициент равен отношению температуры холодного спая, к разнице температур. Напомним, это характеристика идеальной машины, в реальности пока недостижимая.

Блок: 5/8 | Кол-во символов: 3362
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Как оптимизировать работу холодильной машины на элементах Пельтье


На рисунках представлены графики величин, влияющих на КПД элементов Пельтье. Первое, что бросается в глаза – коэффициент термо-ЭДС стремится к нулю по мере роста концентрации носителей заряда. Это напоминает, что металлы не считаются лучшим материалом для создания термопар. Теплопроводность, напротив, возрастает. В термодинамике считается, что она слагается из двух компонентов:

  1. Теплопроводность кристаллической решётки.
  2. Теплопроводность электронная. Указанная составляющая по очевидным причинам зависит от концентрации свободных носителей заряда и обусловливает рост кривой на представленном графике. Теплопроводность кристаллической решётки остаётся практически постоянной.

Исследователей интересует произведение квадрата коэффициента термо-ЭДС на электропроводность. Упомянутая величина стоит в числителе выражения для холодильного коэффициента. Согласно данным, экстремум наблюдается при концентрации свободных носителей в районе 10 в 19 степени единиц на кубический сантиметр. Это на три порядка меньше, чем отмечается в чистых металлах, откуда прямо следует заключение, что идеальным материалом для элементов Пельтье станут полупроводники.

Доля второй компоненты уже сравнительно невелика в меньшую сторону по оси абсцисс, допускается брать и материалы из этого интервала. Электропроводность диэлектриков слишком мала, что объясняет невозможность их применения в данном контексте. Все это позволяет установить причину, почему выводы Альтенкирха не воспринимаются всерьёз.

Блок: 6/8 | Кол-во символов: 1540
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Квантовая теория применительно к элементам Пельтье

Термодинамика не позволяет провести точный расчёт, но качественно описывает процесс выбора материалов для элементов Пельтье. Чтобы исправить ситуацию, физики призывают на помощь квантовую теорию. Она оперирует прежними величинами, выраженными через концентрацию свободных носителей заряда, химический потенциал, постоянную Больцмана. Такие теории принято ещё называть кинетическими (или микроскопическими), потому что рассматривается иллюзорный и непознанный мир мельчайших частиц. Среди обозначений встречаются:

  1. l – длина свободного пробега носителей заряда. Зависит от температуры. Результат определяется по показателю степени механизма рассеяния электронов r (для атомных решёток это 0; для ионных и температуры ниже дебаевской – 0,5; выше дебаевской – 1; при рассеянии ионами примеси – 2).
  2. f – функция распределения Ферми (по энергетическим уровням).
  3. x – приведённая кинетическая энергия носителей заряда.

Интегралы функций Ферми занесены в таблицы, их вычисление не представляет сложности. Уравнения микроскопической теории решают относительно коэффициентов термо-ЭДС и электропроводности, что позволяет найти холодильный коэффициент. Эти сложные операции проделаны Б.И. Боком, установившим, что оптимальное значение коэффициента Зеебека находится в интервале между 150 и 400 мкВ/К, но зависит от степени механизма рассеяния. С первого взгляда понятно, что значения у металлов не наблюдаются. В итоге группой физиков под руководством Иоффе показано, что лучший материал для термопар должен удовлетворять ряду условий:

  1. Максимальное отношение подвижности носителей к коэффициенту теплопроводности кристаллической решётки.
  2. Концентрация носителей согласно формуле, приведённой на рисунке.

В.П. Жузе показывает, какие вещества обладают нужной подвижностью. Их кристаллическая структура посередине между атомной и металлической. Введение примесей в материал всегда понижает подвижность. Этим объясняется факт, что коэффициент термо-ЭДС для сплавов выше, нежели для чистых материалов. Зато примеси увеличивают r. У идеального вещества, не существующего в природе, коэффициент термо-ЭДС должен сохранять постоянное значение, равное 172 мкВ/К. Требуется, чтобы концентрация менялась по закону, указанному на рисунке (см. по п. 2).

Полупроводники отличаются возможностью подобрать материалы, где концентрация носителей заряда зависит от температуры, и отыскать такие, где разница практически равна нулю. За счёт комбинирования указанных качеств возможно попытаться найти самый близкий к идеалу материал.

Блок: 7/8 | Кол-во символов: 2540
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Конструкции холодильников


Для усиления эффекта элементы Пельтье объединяются параллельно. При этом их мощности складываются. Для конструирования собственных холодильников нужно быть в курсе расчета теплопотерь через плоскостные конструкции. Созданы специальные калькуляторы, многие доступны онлайн.

Заниматься конструированием наугад невыгодно по очевидным причинам. А приятная новость в том, что элементы Пельтье значительно подешевели за последние годы. На Али-экспресс купите продукцию из Китая 60 Вт за 300 рублей. Не сложно убедиться, что за 3000 можно собрать холодильник. А какую он станет поддерживать температуру, зависит от конструкции, требующей расчёта.

Блок: 8/8 | Кол-во символов: 663
Источник: https://VashTehnik.ru/enciklopediya/effekt-pelte.html

Кол-во блоков: 15 | Общее кол-во символов: 16206
Количество использованных доноров: 3
Информация по каждому донору:

  1. https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82_%D0%9F%D0%B5%D0%BB%D1%8C%D1%82%D1%8C%D0%B5: использовано 3 блоков из 7, кол-во символов 5349 (33%)
  2. https://StudFiles.net/preview/1083949/page:6/: использовано 1 блоков из 2, кол-во символов 308 (2%)
  3. https://VashTehnik.ru/enciklopediya/effekt-pelte.html: использовано 8 блоков из 8, кол-во символов 10549 (65%)




Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий

Ваш адрес email не будет опубликован.