Переменный ток в трехфазном генераторе

Большинство генераторов переменного тока, а также линий, передающих электроэнергию, используют трехфазные системы. Передача тока осуществляется по трем линиям (или четырем) вместо двух. Трехфазный ток представляет собой систему переменного электротока, где значения токов и напряжений меняются по синусоидальному закону. Частота синусоидальных колебаний тока в России и Европе – 50 Гц.

Трехфазная ЛЭП

Трехфазная ЛЭП

Блок: 1/6 | Кол-во символов: 400
Источник: https://elquanta.ru/teoriya/trekhfaznyjj-tok.html

Содержание

История

Электрические машины, генерирующие переменный ток, были известны в простом виде со времён открытия магнитной индукции электрического тока. Ранние машины были разработаны Майклом Фарадеем и Ипполитом Пикси.

Фарадей разработал «вращающийся прямоугольник», действие которого было многополярным — каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году. Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году. Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший переменный ток частотой между 100 и 300 герц. В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года были изобретены многофазные альтернаторы. Генератор трехфазного тока с трехпроводной нагрузкой предложил русский инженер Доливо-Добровольский, он же в 1903 году построил первую в мире промышленную трехфазную электростанцию, питавшую Новороссийский зерновой элеватор.

Блок: 2/14 | Кол-во символов: 1197
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Историческая справка

Короткозамкнутый роторТрёхфазный ток — это частный случай многофазного тока. Впервые двухфазный ток был получен известным изобретателем Николой Теслой. Большой вклад в формирование трёхфазных систем внёс русский учёный М. О. Доливо-Добровольский. Он использовал трёх- и четырёхпроводную системы передачи переменного тока и на её основе построил асинхронный двигатель.

Главной особенностью его изобретения стал короткозамкнутый ротор типа «беличье колесо», который применяется в асинхронных электродвигателях и сейчас. Ещё одним достижением изобретателя была линия электропередачи, построенная им с использованием генератора и трансформаторов трёхфазного переменного тока. Длина линии составляла 170 км, что было огромным шагом вперёд для конца XIX века.

Блок: 2/5 | Кол-во символов: 758
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/trehfaznyy-peremennyy-tok-i-seti-na-ego-osnove.html

Теория генератора переменного тока

В прямоугольном контуре вращается постоянный магнит.

Принцип действия генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле. Или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле.

Допустим, что однородное магнитное поле, создаваемое постоянным магнитом, вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью . Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:

и ,

где

и  — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;

 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

 — длина каждой из активных сторон контура в метрах;

 — линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;

 — время в секундах;

и  — углы, под которыми магнитные линии пересекают активные стороны контура.

Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,

будет равна , то есть индуктированная электродвижущая сила в контуре изменяется по синусоидальному закону.

Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.

Можно преобразовать формулу , выразив её через максимальный магнитный поток , пронизывающий контур.

Относительная линейная скорость активных сторон равна произведению радиуса вращения на угловую скорость , то есть .

Тогда получим ,

где

 — амплитуда синусоидальной электродвижущей силы;

 — фаза синусоидальной электродвижущей силы;

 — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре.

С учётом того, что контур состоит из многих витков провода, электродвижущая сила пропорциональна количеству витков и формула будет выглядеть так: .

Если ввести в формулу максимальный магнитный поток, тогда .

Блок: 3/14 | Кол-во символов: 2559
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Что такое трехфазный ток

Трехфазная система переменного тока – это три синусоидальных токовых сигнала, различия между которыми составляют треть цикла или 120 электрических градусов (полный цикл – 360°). Они проходят свои максимумы в регулярном порядке, называемом фазовой последовательностью. Синусоидальное напряжение пропорционально косинусу или синусу фазы.

Трехфазный ток

Трехфазный ток

Три фазы поставляются обычно по трем (или четырем) проводам, а фазные и линейные напряжения в трехфазных цепях представляют собой разности потенциалов между парами проводников. Фазные токи являются токовыми величинами в каждом проводнике.

Блок: 3/6 | Кол-во символов: 612
Источник: https://elquanta.ru/teoriya/trekhfaznyjj-tok.html

Принцип работы генератора переменного тока, устройство, схема

Принципы работы генератора

Генераторы переменного тока, которые еще часто называют альтернаторами, представляют собой электромеханические устройства, предназначенные для преобразования механической энергии в электрическую. Принцип работы множества из них основывается на вращении магнитного поля. Современные генераторы имеют довольно простую конструкцию и способны производить электроэнергию высокого напряжения.

Большой востребованностью в современной энергетике стали пользоваться электромеханические генераторы вращающегося типа.

Принцип их работы основывается на возникновении электродвижущей силы в проводнике, который находится под воздействием переменного магнитного поля. Все генераторы состоят из двух основных частей: индуктора, в котором создается магнитное поле, и якоря, создающего электродвижущую силу. Неподвижный элемент генератора носит название статор, а вращающийся — ротор. В генераторах переменного тока ротор выполняет функции индуктора.

Конструктивно индуктор представляет собой электромагнитную систему, в состав которой входит 2 полюса или больше и обмотка возбуждения. Эту обмотку питает постоянный ток возбуждения. В некоторых случаях используются индукторы, основой которых являются постоянные магниты.

Во всем современном мире подавляющую часть электроэнергии получают с использованием синхронных альтернаторов.

(Альтернатор) Электрический генератор — это устройство, в котором не электрические виды энергии преобразуются в электрическую энергию.

Вращающийся индуктор в таких устройствах образует магнитное поле, индуцирующее в статоре (как правило, с трехфазной обмоткой) электродвижущую силу переменного типа. Численно частота такой силы совпадает с количеством оборотов ротора за определенный промежуток времени.

Трёхфазные генераторы переменного тока

Трехфазное напряжение, которое производится трехфазным генератором, можно стабилизировать за счет применения трех однофазных стабилизаторов, подсоединенных по схеме «звезда».

Для современных потребителей, предъявляющих высокие требования к полнофазному питанию, это не самое лучшее решение, поскольку при отключении одного из стабилизаторов при аварийной ситуации отключается одна фаза.

Подобной ситуации можно избежать, используя синхронизатор, который в случае отсутствия одной фазы или двух просто отключает нагрузку. Существуют в настоящее время также трехфазные стабилизаторы напряжения, установка которых производится намного проще.

  • Такие устройства внешне выглядят как напольные стойки, оборудованные блоками однофазных стабилизаторов.

Применение генератора переменного тока

Генераторы переменного тока (альтернаторы) широко применяются в поликлиниках, детских садиках, морозильных складах, больницах и многих других местах и учреждениях, в которых требуется поддержание стабильного электроснабжения.

Такое оборудование можно использовать также на строительных объектах в случае невозможности подсоединения к централизованной электросети. Они позволяют снабжать электричеством домашние сети коттеджей и загородных домов.

lidol.ru

Блок: 4/8 | Кол-во символов: 3117
Источник: https://starimpex.ru/raznoe/trehfaznyj-generator-peremennogo-toka.html

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото - электрический генератор для автомобиля

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Блок: 4/5 | Кол-во символов: 1770
Источник: https://Elektrik-a.su/elektrooborudovanie/generatory/ustrojstvo-generatora-peremennogo-toka-1009

Соединение обмоток электрической машины

Обмотки генератора и нагрузок соединяются по схемам звезда или треугольник. При соединении в звезду образуется общая нулевая точка из связанных между собой концов обмоток, а к началам обмоток присоединяются линейные провода. Нейтрали или нулевые точки генератора и нагрузки связываются нулевым проводом. Напряжение, создающееся между линейным проводом и нулевым, называется фазным, а между двумя линейными проводами — линейным.

Нулевой провод предназначен для выравнивания напряжения на всех фазах при несимметричной нагрузке. Сила тока, протекающего в этом проводе меньше, чем в линейных проводах, что даёт возможность выбрать проводник меньшего сечения. Зависимости для линейных и фазных токов и напряжений при соединении звездой имеют вид: Iл = Iф, Uл = √3 Uф ≈ 1,73 Uф.

Соединение обмоток электрической машины

При выполнении схемы треугольник конец каждой обмотки соединяется с началом следующей. Для этой схемы используется три провода, ведущих от генератора к нагрузке. Соотношение между токами и напряжениями, линейным и фазным, равно: Uл = Uф, Iл = √3 Iф.

Обмотки генератора чаще соединяют по схеме звезда. При соединении треугольником каждая фаза должна рассчитываться на напряжение в 1,73 раза больше, чем при соединении звездой. Это влечёт за собой усиление изоляции обмоток, увеличение количества витков и удорожание машин.

В распределительных сетях, где присутствует много однофазных потребителей, обеспечение симметричной нагрузки на фазы становится невозможным. Такие сети исполняются четырехпроводными с нулевым проводником.

Проводники, принадлежащие различным фазам Проводники, принадлежащие различным фазам и нейтральные, имеют разные цвета. Это делается в целях обеспечения безопасности при электромонтажных работах и для удобства при ремонте и монтаже электрических сетей. В России нейтральный проводник обычно делается голубым, первая фаза — жёлтой, вторая — зелёной, третья — красной.

Выбор способа подключения для потребителя зависит от следующих характеристик:

  • номинального напряжения потребителей электрической энергии;
  • характера нагрузки;
  • подаваемого трёхфазного напряжения.

При практическом применении 3-фазных сетей важно помнить, что при подключении звездой на нагрузки действует фазное напряжение, а при подключении треугольником — линейное напряжение, которое в 1,73 раза больше, чем фазное.

Блок: 4/5 | Кол-во символов: 2303
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/trehfaznyy-peremennyy-tok-i-seti-na-ego-osnove.html

Генератор на жидком топливе

Бензиновый генератор

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Блок: 5/5 | Кол-во символов: 1307
Источник: https://Elektrik-a.su/elektrooborudovanie/generatory/ustrojstvo-generatora-peremennogo-toka-1009

Трехфазный и однофазный ток

Схемная конфигурация «Y» дает возможность использовать два разных напряжения при питании потребителей бытовой и промышленной сети: 220 В и 380 В. 220 В получается с использованием двух проводников. Один из них –фазный, другой – N-проводник. Напряжение между ними соответствует фазному. Если взять 2 проводника, оба представляющие собой фазы, то напряжение между фазами носит название линейного и равно 380 В. Для подключения используются все 3 фазы.

Распределение напряжений в однофазной и трехфазной системах

Распределение напряжений в однофазной и трехфазной системах

Основные различия однофазной и трехфазной систем:

  1. Однофазный ток предполагает питание через один проводник, трехфазный – через три;
  2. Для завершения цепи однофазного питания требуется 2 проводника: еще один нейтральный, для трехфазного – 4 (плюс нейтральный);
  3. Наибольшая мощность передается по трем фазам, в отличие от однофазной системы;
  4. Однофазная сеть более простая;
  5. При неисправности фазного провода в однофазной сети питание полностью пропадает, в трехфазной – подается по двум оставшимся фазам.

Интересно. Никола Тесла, первооткрыватель многофазных токов и изобретатель асинхронного двигателя, использовал двухфазный ток с разностью фаз 90°.Такая система пригодна для создания вращающегося магнитного поля больше, чем однофазная, но меньше, чем трехфазная. Двухфазная система поначалу получила распространение в США, но затем полностью исчезла из употребления.

Сегодня почти все электроснабжение основано на низкочастотном трехфазном токе при параллельном использовании индивидуальных фаз. Практически все электростанции имеют генераторы, производящие трехфазный ток. Трансформаторы могут работать с трехфазным или однофазным током. Наличие реактивной мощности в подобных сетях требует установки компенсирующего оборудования.

Блок: 5/6 | Кол-во символов: 1758
Источник: https://elquanta.ru/teoriya/trekhfaznyjj-tok.html

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Трехфазные генераторы переменного тока и устройство их

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

Синхронный генератор электрического тока и принцип действия этого устройства

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Принципиальная схема генератора тока

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

Принцип действия и устройство синхронного генератора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

Асинхронный электрический двигатель

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Блок: 3/5 | Кол-во символов: 11211
Источник: https://Elektrik-a.su/elektrooborudovanie/generatory/ustrojstvo-generatora-peremennogo-toka-1009

Видео

Блок: 6/6 | Кол-во символов: 5
Источник: https://elquanta.ru/teoriya/trekhfaznyjj-tok.html

Характеристика холостого хода генератора

Электродвижущая сила генератора переменного тока пропорциональна величине магнитного потока и числу оборотов ротора генератора в минуту:

, где  — коэффициент пропорциональности (определяется конструкцией генератора).

Хотя величина ЭДС синхронного генератора зависит от числа оборотов ротора, регулировать её путём изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота переменного тока, генерируемого генератором. При работе генератора в электрических сетях частота должна строго соблюдаться (в России 50 герц).

Следовательно, единственный способ изменить величину ЭДС синхронного генератора — изменить магнитный поток .

Магнитный поток пропорционален силе тока в контуре (А, ампер) и индуктивности (Гн, генри):

.

Отсюда формула ЭДС синхронного генератора будет выглядеть так: .

Регулирование ЭДС путём изменения магнитного потока осуществляется последовательным включением в цепь обмоток возбуждения реостатов или электронных регуляторов напряжения. На роторе генератора находятся контактные кольца, ток возбуждения подводится через щёточный узел (скользящие контакты). В том случае, если на общем валу с генератором находится малый генератор-возбудитель — тогда регулирование осуществляется опосредованно, путём регулирования тока возбуждения генератора-возбудителя.

В том случае, когда используются генераторы переменного тока с возбуждением от постоянных магнитов (например, в малой энергетике) — осуществляется регулирование выходного напряжения с помощью внешних устройств: регуляторы и стабилизаторы напряжения. См. также стабилизаторы переменного напряжения, импульсный стабилизатор напряжения.

Если безразлично, ток какой частоты получается на зажимах генератора (например, переменный ток затем выпрямляется, как на тепловозах с передачей переменно-постоянного тока, таких как ТЭ109, ТЭ114, ТЭ129, ТЭМ7 и др.) — ЭДС регулируется и изменением тока возбуждения и изменением числа оборотов тягового генератора.

Блок: 7/14 | Кол-во символов: 2017
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Параллельная работа синхронных генераторов

На электростанциях синхронные генераторы соединяются друг с другом параллельно для совместной работы на общую электрическую сеть. Когда нагрузка на электрическую сеть мала, работает только часть генераторов, при повышенном энергопотреблении («час пик») включаются резервные генераторы. Этот способ выгоден, так как каждый генератор работает на полную мощность, следовательно, с наиболее высоким коэффициентом полезного действия.

Синхронизация генератора с электрической сетью

В момент подключения резервного генератора к электрическим шинам его электродвижущая сила должна быть численно равна напряжению на этих шинах, иметь одинаковую с ним частоту, и фазовый сдвиг равный нулю. Процесс выведения резервного генератора на режим, при котором обеспечивается указанное условие, называется синхронизацией генератора.

Если это условие не будет выполнено (подключаемый генератор не выведен на синхронный режим), то из сети в генератор может пойти большой ток, генератор заработает в режиме электродвигателя, что может привести к аварии.

Для выполнения синхронизации подключаемого генератора с электрической сетью применяются специальные устройства, в простейшем виде — синхроноско́п.

Синхроноскоп представляет собой лампу накаливания и «нулевой» вольтметр, включенные параллельно контактам рубильника, отключающего генератор от шин сети (соответственно сколько фаз, столько ламп накаливания и вольтметров).

При разомкнутом состоянии рубильника параллельная сборка «лампа накаливания — „нулевой“ вольтметр» оказывается включенной последовательно цепи «фаза генератора — фаза электросети».

После запуска генератора (при разомкнутом рубильнике) его выводят на номинальные обороты, и регулируя ток возбуждения, добиваются того, чтобы электрическое напряжение на клеммах генератора и на шинах сети было приблизительно одинаковым.

Когда генератор приближается к режиму синхронизации, лампы накаливания начинают мигать, и в момент почти полной синхронизации они гаснут. Однако лампы гаснут при напряжении, не равном нулю, для индикации полного нуля служат вольтметры («нулевые» вольтметры). Как только и «нулевые» вольтметры покажут 0 вольт — генератор и электрическая сеть синхронизированы, можно замыкать рубильник. Если две лампы накаливания (на двух фазах) погасли, а третья — нет, это означает, что одна из фаз генератора подключена неправильно к шине электрической сети.

Блок: 8/14 | Кол-во символов: 2413
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Генераторы переменного тока на транспорте

Трёхфазные генераторы переменного тока с встроенным полупроводниковым мостовым трёхфазным выпрямителем используются на современных автомобилях для зарядки автомобильного аккумулятора, а также для питания электропотребителей, таких как система зажигания, автомобильная светотехника, бортовой компьютер, система диагностики и других. Постоянство напряжения в бортовой сети поддерживается специализированным регулятором напряжения.

Применение автомобильных генераторов переменного тока позволяет уменьшить габаритные размеры, вес генератора, повысить его надёжность, сохранив или даже увеличив его мощность по сравнению с генераторами постоянного тока.

Например, генератор постоянного тока Г-12 (автомобиль ГАЗ-69) весит 11 кг, номинальный ток 20 ампер, а генератор переменного тока Г-250П2 (автомобиль УАЗ-469) при массе 5,2 кг выдаёт номинальный ток 28 ампер.

Генераторы переменного тока применяются в гибридных автомобилях, позволяющих совмещать тягу двигателя внутреннего сгорания и электродвигателя. Это позволяет избежать работы ДВС в режиме малых нагрузок, а также реализовывать рекуперацию кинетической энергии, что повышает топливную эффективность силовой установки.

На тепловозах, таких как ТЭ109, ТЭ114, ТЭ129, ТЭМ7, ТЭМ9, ТЭРА1, ТЭП150, 2ТЭ25К применяется электрическая передача переменно-постоянного тока, устанавливаются синхронные трёхфазные тяговые генераторы. Тяговые электродвигатели постоянного тока, вырабатываемая генератором электроэнергия выпрямляется полупроводниковой выпрямительной установкой. Замена генератора постоянного тока на генератор переменного тока позволила снизить массу электрооборудования, резерв может быть использован для установки более мощного дизельного двигателя. Однако тяговый генератор переменного тока не может использоваться как стартер для двигателя внутреннего сгорания, запуск производится генератором постоянного тока для цепей управления.

На опытном тепловозе 2ТЭ137, новых российских локомотивах 2ТЭ25А, ТЭМ21 применяется электрическая передача переменно-переменного тока, с асинхронными тяговыми электродвигателями.

Блок: 9/14 | Кол-во символов: 2115
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Асинхронные двигатели как генераторы переменного тока

Как обратимая электрическая машина асинхронный электродвигатель переменного тока может быть переведён в генераторный режим.

В генераторном режиме скольжение (разница между угловой скоростью ротора и угловой скоростью вращающегося магнитного поля) меняет знак,

то есть асинхронный двигатель работает как асинхронный генератор.

Данное включение используется в основном на транспорте для реостатного или рекуперативного торможения (там, где в качестве тяговых электродвигателей применяются асинхронные).

Блок: 10/14 | Кол-во символов: 557
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Охлаждение генераторов переменного тока

Генератор с водородным охлаждением, окрашен в красный цвет

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя КПД современных генераторов очень высок, абсолютные потери достаточно велики, что приводит к значительному повышению температуры активной стали, меди и изоляции. Повышение температуры конструктивных элементов, в свою очередь, ведёт к их постепенному разрушению и уменьшению срока службы генератора. Для предотвращения этого применяют различные системы охлаждения.

Выделяют следующие типы систем охлаждения: поверхностное (косвенное) и непосредственное охлаждение. Косвенное охлаждение в свою очередь может быть воздушным и водородным.

Водородные системы охлаждения чаще устанавливаются на крупные генераторы, так как они обеспечивают лучший отвод тепла (По сравнению с воздухом водород имеет большую теплопроводность и в 10 раз меньшую плотность). Водород пожаро- и взрывоопасен, поэтому применяется изоляция вентиляционной системы и поддержание повышенного давления.

Блок: 11/14 | Кол-во символов: 1081
Источник: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0

Кол-во блоков: 21 | Общее кол-во символов: 35180
Количество использованных доноров: 5
Информация по каждому донору:

  1. https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0: использовано 7 блоков из 14, кол-во символов 11939 (34%)
  2. https://starimpex.ru/raznoe/trehfaznyj-generator-peremennogo-toka.html: использовано 1 блоков из 8, кол-во символов 3117 (9%)
  3. https://Elektrik-a.su/elektrooborudovanie/generatory/ustrojstvo-generatora-peremennogo-toka-1009: использовано 3 блоков из 5, кол-во символов 14288 (41%)
  4. https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/trehfaznyy-peremennyy-tok-i-seti-na-ego-osnove.html: использовано 2 блоков из 5, кол-во символов 3061 (9%)
  5. https://elquanta.ru/teoriya/trekhfaznyjj-tok.html: использовано 4 блоков из 6, кол-во символов 2775 (8%)


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован.